Авторы: Г. БУТЕЙКИС, д-р биомед. наук, Д. БЛАЖИНСКАС, компания «Балтиёс энзимай», Литва

Ферменты – гарантия ощутимой выгоды сегодня и в будущем

Ферменты прошли долгий путь с момента первого их использования в кормах, с 1925 г. Основным требованием к кормовым ферментам является их способность эффективно расщеплять антипитательные вещества, присутствующие в кормах, в основном некрахмалистые полисахариды (НПС) и фитаты. Современные технологии позволяют четко определить эти субстраты в кормах и установить механизмы воздействия на них ферментов, задавая новые цели для микробиологических технологий.

Некрахмалистые полисахариды в кормах

Полисахариды, содержащиеся в растительном сырье (зерновых, бобовых и масличных культурах, в другом сырье), делятся на крахмалистые и некрахмалистые (НПС). Крахмалистые полисахариды, такие как крахмал, сахар и другие легкоусвояемые углеводы — главные источники энергии для животных и птицы. Некрахмалистые полисахариды — это основная антипитательная часть сырья растительного происхождения, труднопереваримая организмом животных. В составе НПС в основном арабиноксиланы, целлюлоза, β-глюканы и олигосахариды (см. Таблицу 1).

Некрахмалистые полисахариды бывают растворимыми и нерастворимыми. Первые растворяются в химусе, повышая при этом его вязкость и замедляя транзит в пищеварительном тракте. Вследствие этого значительно ухудшаются переваримость и усвояемость питательных веществ корма, особенно жира и витамина D3. Из-за снижения

усвояемости питательных веществ и обменной энергии ухудшаются конверсия корма и показатели продуктивности сельскохозяйственной птицы и свиней. НПС отрицательно влияют на оптимальное соотношение воды и корма, изменяют микробиологический баланс кишечника, способствуют образованию липкого помета и загрязнению яиц курнесушек, ухудшают качество продукции и подстилки, а также микроклимат в помещениях животноводства.

Результаты опытов, проведенных в последние два десятилетия, показывают, что снижение содержания клетчатки в зерне за счет отделения оболочки не уменьшает негативного влияния НПС на продуктивность птицы и свиней, а наоборот, увеличивает их уровень в эндосперме.

В настоящее время наилучшим способом предотвращения отрицательного эффекта НПС является использование в кормах ферментных препаратов, в составе которых ферменты ксиланаза, целлюлаза и β-глюканаза (см. Таблицу 2).

Преимущества использования кормовых ферментов

Дилемма между экономической привлекательностью использования дешевых кормов с высоким уровнем антипитательных факторов и исходящей от них опасностью снижения интенсивности роста и продуктивности животных сегодня решается с помощью экзогенных ферментов, вводимых в корма. Также ферменты позволяют увеличивать ввод местного дешевого сырья растительного происхождения, в том числе продуктов переработки мукомольной, масложировой, пивоваренной, спиртовой, крахмалопаточной, сахарной и хлебопекарной промышленности (подсолнечные, рапсовые шроты и жмыхи, кукурузный и пшеничный глютен, отруби, барда и др.). Но это сырье, хотя и богато питательными веществами, характеризуется низкой кормовой ценностью из-за наличия в нем трудногидролизуемых некрахмалистых полисахаридов. Повысить его переваримость и увеличить норму ввода в комбикорм возможно при применении высокоактивных ферментов — ксиланазы, целлюлазы и β-глюканазы. Такая мера способствует сокращению доли зерновых в комбикорме, снижению себестоимости корма и продукции животноводства до 10% (Ravindran и Amerah, 2008; Cowieson и соавт., 2005; Bestman и соавт., 2011). Кроме того, с ферментами повышается доля свежеубранного зерна в рационе животных и птицы без ущерба для их продуктивности.

По данным Pimlanghout (2012), F.J. Schoener (2012), D. Feuerstein (2012) и других авторов, использование ферментов позволяет улучшить конверсию корма на 3–5%, увеличить усвояемость обменной энергии на 3–5%, аминокислот — на 1,5–2,5%.

Таблица 1. Содержание некрахмалистых полисахаридов в кормовом сырье, % в пересчете на CB*

	Некрахмалистые полисахариды			
Вид сырья	арабиноксиланы	целлюлоза	8-глюканы	общее содержание
Пшеница	6,0–9,5	2,0–3,0	0,8–1,5	7,5–11,2
Ячмень	5,5–7,0	3,9–9,0	4,3–10,0	13,0–16,5
Рожь	7,6–9,0	2,1–2,5	0,5–2,5	11,0–13,0
Кукуруза	4,0–4,3	1,9–3,0	0,1–0,2	5,0–7,0
Тритикале	5,4–6,9	2,3–3,0	0,2–2,0	8,0–11,0
Овес	5,5–6,9	8,0–12,3	3,0–6,6	15,0–25,0
Подсолнечный шрот	6,5–11,0	16,0–23,0	2,5–5,0	21,0–30,0
Соевый шрот	3,5–4,5	4,0–6,0	_	9,0–12,0

^{*} По данным Englyst и соавт., 1989; Choct, 1997; Knudsen, 1997; Kocher и соавт., 2000; Malathi и соавт., 2001; Sredanovic и соавт., 2005; Gruzauskas и соавт., 2012.

Таблица 2. Результаты действия современных кормовых ферментов (Enzymes in Farm Animal Nutrition, 2001)

Фермент	Действие	Результаты действия
Ксиланаза	Расщепляет арабиноксиланы до низкомолекулярных углеводов и глюкозы	При вводе в комбикорма для птицы и свиней повышается усвояемость обменной энергии и аминокислот корма. Улучшаются продуктивность, конверсия корма и качество подстилки
Целлюлаза	Расщепляет целлюлозу до низкомолекулярных углеводов и глюкозы	При вводе в комбикорма для птицы и свиней с низкой питательностью и высоким содержанием клетчатки повышается усвояемость обменной энергии и аминокислот корма. Улучшаются продуктивность и конверсия корма
β-глюканаза	Расщепляет в-глюканы до низкомолекулярных углеводов и глюкозы	При вводе в комбикорма для птицы и свиней повышается усвояемость обменной энергии и аминокислот корма. Улучшается конверсия корма
Фитаза	Улучшает доступность фосфора из фитиновой кислоты	При вводе в комбикорма для птицы и свиней уменьшается потребность в источниках неорганического фосфора
Протеаза	Расщепляет протеины до пептидов и аминокислот	При использовании в составе заменителей цельного молока с соевым протеином улучшается переваримость протеина, снижается выделение азота
Амилаза	Расщепляет зерновой крахмал до декстринов и сахаров	При вводе в престартерные и стартерные комбикорма для поросят и телят повышается норма ввода зерна в комбикорма

Еще одно преимущество применения ферментов — улучшение микроклимата в помещениях, где содержатся свиньи и птица. В результате воздействия ферментов на НПС корма оптимизируется соотношение количества воды и корма в организме, снижается вязкость химуса в пищеварительном тракте, повышается содержание сухого вещества в экскрементах, соответственно, уменьшается образование липкого помета, подстилка становится более сухой, меньше выделяется аммиака, что положительно влияет на продуктивность свиней и птицы и качество продукции. Улучшение микроклимата и условий содержания птицы, повышение ее жизнеспособности, уменьшение патогенной микрофлоры в кишечнике — зачастую это последствия воздействия ферментов.

Технологические свойства ферментов

Эффективность применения ферментных препаратов зависит от состава и концентрации специфических ферментных активностей в единице белка; от технологических свойств препаратов, таких как термостабильность, устойчивость к низкому рН пищеварительного тракта, к эндогенным протеазам и к температуре окружающей среды. От диаметра и числа частиц препарата в 1 г зависит равномерность его распределения в комбикорме. Универсальность и широкий спектр дей-ствия ферментных препаратов позволяют использовать единую дозировку для всех видов сель-скохозяйственных животных, независимо от состава и питательности кормов. Это облегчает процесс кормопроизводства, помогает избежать ошибок при вводе ферментов в премиксы и комбикорма, что гарантирует высокое качество кормов и хорошие показатели производства мяса и яиц.

Сегодня в рационы животных и птицы вводят в основном ксиланазы, целлюлазы и β-глюканазы. Другие ферменты с карбогидразной активностью, например амилазу, редко применяют и только - для поросят в первые недели жизни с целью повышения усвояемости крахмала. Но как свидетельствуют результаты производственных проверок, амилаза не всегда способствует большему росту поросят (H.Jeroch, W. Drochner, O. Simon 1999).

Некоторые производители ферментных препаратов декларируют в своих продуктах несколько ферментных активностей, но как дополнительные или сопутствующие. Такие «дополнительные» активности не контролируются в каждой партии продукта, а их значения сильно разнятся. Современные технологии позволяют производить продукты с высокими активностями (ксиланазы, целлюлазы, β-глюканазы и др.); контролировать и декларировать несколько активностей как основные.

Вопрос термостабильности кормовых ферментов всегда был актуальным. Считается, что обработка комбикорма при высоких температурах, например при гранулировании, необходима для его гигиены, особенно для устроения сальмонеллы, а также для повышения переваримости питательных веществ и разрушения некоторых антипитательных веществ. Однако для контроля сальмонеллы достаточно обрабатывать корм при температуре 80-85°C в течение 30 с (Veldman и соавт., 1995; Creswell и Bedford, 2006; Jones и Richardson, 2004), а для желатинизации крахмала — 70-80°C. При высоких температурах больше высвобождается растворимой части НПС, в основном арабиноксиланов и β-глюканов, которые резко повышают вязкость химуса; снижается доступность питательных веществ корма из-за денатурации протеинов и карамелизации сахаров (реакция Мейера); разрушаются биологически активные вещества, в основном ферменты, витамины, аминокислоты.

Результаты научных опытов и производственных проверок доказывают, что для максимально эффективного выращивания бройлеров не рекомендуется превышать температуру при гранулиро-

вании корма, составляющую 85°С. Современные технологии позволяют успешно использовать ферменты, которые не теряют своей активности при обработке кормов при температуре 85–90°С.

Перспективы на будущее

За последние 10-15 лет произошли серьезные изменения в использовании зерна. Если раньше за него конкурировали между собой производители продуктов питания и кормов, то сейчас к ним присоединились и производители биотоплива. Непрерывный рост населения требует увеличения производства пищи и энергии, что плотно связано с

интенсификацией сельского хозяйства. При применении высокоактивных карбогидраз и фитаз в кормлении сельскохозяйственной птицы и свиней можно снизить затраты на энергию, протеины и фосфаты, а благодаря более эффективному пищеварению и усвоению питательных веществ корма уменьшить выделение питательных веществ, в основном фосфора и азота, в окружающую среду, решая таким образом важные сегодня экологические проблемы.

Во многих странах наблюдается устойчивая тенденция к сокращению в комбикормах доли дорогостоящего зерна за счет интенсивного применения вторичных продуктов перерабатываю-

щей промышленности. В связи с этим актуальным становится поиск новых, высокоактивных ферментов, позволяющих снизить себестоимость мяса и яиц. Снижение использования зерна в кормлении животных позволит увеличить его использование в питании людей.

Ферменты, расщепляющие НПС, одновременно позитивно влияют на развитие микрофлоры в кишечнике, снижая тем самым риск инфекционных и неинфекционных заболеваний сельско-хозяйственных животных и птицы. Это важно при сокращении применения антибиотиков для стимулирования роста и ветеринарных препаратов для лечения в будущем.

Автор: Гиедрюс БУТЕЙКИС, доктор биомедицинских наук, представитель компании «Baltijos Enzimai» (Балтиёс Энзимай), Литва

Как правильно пересчитывать энергию и питательные вещества при использовании энзимов в кормах

Доклад на XI Международной конференции «Птицеводство-2015» (г. Трускавец, 15-17 сентября 2015 года)

егодня в мире накоплен большой объем информации по кормлению птицы, и каждому специалисту необходимо в данной информации ориентироваться, уметь ее обработать, чтобы принимать правильные решения. Производители стараются оптимизировать корма, и когда стоит цель сделать качественный комбикорм, имеется зависимость от ряда факторов:

- наличие сырья на складе;
- достоверности данных по питательности данного сырья;
- достоверности данных по цене сырья;
- знания о физиологических потребностях птицы в питательных веществах;

 опыта и компетенции специалистов в составлении рецептов комбикормов.

Если все эти факторы объединить, то мы получим сбалансированный по питательности и себестоимости комбикорм, а в результате добьемся высокой продуктивности птицы.

Исходя из нашего богатого опыта, в данном перечне стоит отметить 2 важных аспекта, в которых часто возникают ошибки: данные по питательности сырья и, конечно, опыт и компетенция специалистов.

Возможные ошибки в пересчете энергии и питательных веществ

1. Достоверность данных питательности сырья (контроль качества, питательность, свежий урожай и пр.)

Рассмотрим более детально на примере подсолнечного шрота, так как данный вид сырья очень распространен и популярен. Мы легко можем установить такие показатели как:

- сырой протеин 36%;
- сырой жир 1,7%;
- сырая клетчатка 19%.

Перечисленные цифры можно получить из лаборатории, но возникают трудности с показателем обменной энергии из-за разницы в исходных данных. Так, по различным справочным данным этот показатель может колебаться от 1730 ккал/кг до 2174 ккал/кг. И как определить, какие данные брать за исходные, чтобы не допустить ошибок, и чтобы потом не пострадала птица? Наша рекомендация — придерживаться нижней границы показателей, так как на основе имеющихся формул и данных из лаборатории мы можем рассчитать обменную энергию самостоятельно.

Формула, разработанная Всемирной научной ассоциацией по птицеводству (WPSA, 1985):

 $09=3,70*(\Pi+8,20*CM+3,99*Kp+3,11*Cax$

где, 03 — обменная энергия комбикорма (ккал/100 гр), (П — массовая доля сырого протеина (%).

СЖ — массовая доля сырого жира (%),

Кр — массовая доля крахмала (%),

Сах — массовая доля сахара (%).

К чему может привести использование недостоверных данных по под-